Variance Analysis for Monte Carlo Integration: Representation-Theoretic Perspective
نویسندگان
چکیده
In this report, we revisit the work of Pilleboue et al. [2015], providing a representation-theoretic derivation of the closed-form expression for the expected value and variance in homogeneous Monte Carlo integration. We show that the results obtained for the variance estimation of Monte Carlo integration on the torus, the sphere, and Euclidean space can be formulated as specific instances of a more general theory. We review the related representation theory and show how it can be used to derive a closed-form solution.
منابع مشابه
Variance Analysis for Monte Carlo Integration: A Representation-Theoretic Perspective
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملMonte Carlo Integration in Bayesian Statistical Analysis
A review of Monte Carlo methods for approximating the high-dimensional integrals that arise in Bayesian statistical analysis. Emphasis is on the features of many Bayesian applications which make Monte Carlo methods especially appropriate, and on Monte Carlo variance-reduction techniques especially well suited to Bayesian applications. A generalized logistic regression example is used to illustr...
متن کاملMonte Carlo Convergence Analysis for Anisotropic Sampling Power Spectra
Traditional Monte Carlo (MC) integration methods use point samples to numerically approximate the underlying integral. This approximation introduces variance in the integrated result, and this error can depend critically on the sampling patterns used during integration. Most of the well known samplers used for MC integration in graphics, e.g. jitter, Latin hypercube (n-rooks), multi-jitter, are...
متن کاملMonte Carlo Complexity of Parametric Integration
The Monte Carlo complexity of computing integrals depending on a parameter is analyzed for smooth integrands. An optimal algorithm is developed on the basis of a multigrid variance reduction technique. The complexity analysis implies that our algorithm attains a higher convergence rate than any deterministic algorithm. Moreover, because of savings due to computation on multiple grids, this rate...
متن کاملSampling and Variance Analysis for Monte Carlo Integration in Spherical Domain. (Analyse de Variance et Échantillonnage pour l'intégration Monte Carlo sur la sphère)
This dissertation introduces a theoretical framework to study different sampling patterns in the spherical domain and their effects in the evaluation of global illumination integrals. Evaluating illumination (light transport) is one of the most essential aspect in image synthesis to achieve realism which involves solving multi-dimensional space integrals. Monte Carlo based numerical integration...
متن کامل